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Abstract

To understand some of the most fundamental processes responsible for life on Earth,
such as photosynthesis, quantum dynamical descriptions are of utmost importance.
This analysis can be performed by studying the so-called open systems through a vari-
ation of the mean-field Ehrenfest Dynamics methods, known as Numerical Integration
of Schrödinger equation (NISE). A key ingredient for the calculations using NISE is
the time-dependent site energies. Such fluctuations can be obtained from Molecular
Dynamics (MD) simulations. However, these methods are usually computationally
expensive, and do not provide the desired accuracy. An alternative approach is the
generation of structured noise following the bath spectral density. This has been done
previously for systems described by simple spectral functions.

In this thesis I implement an enveloping algorithm capable of generating noise with
any arbitrary spectral density. Several tests are performed to verify the validity, scope
and limitations of the algorithm. After finding the parameters necessary to repli-
cate more complex spectral shapes, this noise is used in the calculation of population
dynamics for a collection of test systems. These simulations provide insight on the
parameter regimes and specific considerations for the implementation of the noise in
these calculations, and yield useful information in the performance of NISE under the
new frameworks.

The results introduced here expand the ensemble of quantum dynamical processes
that can be studied, that until now was limited to those described by simple spectra or
by inaccurate and expensive computations. Thus, the analysis of quantum dynamics
involving more complex system-bath interactions is enabled, along with an increase in
the computational feasibility and accuracy.
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1 Introduction

The biological process by which plants and other photosynthetic systems convert the raw
energy from sunlight into stable chemical energy plays a protagonist role to power life on
Earth [1]. This makes of Light-harvesting (LH) one of the main processes of energy acquisi-
tion in our planet [2]. The process starts when the photon first enters the LH complex and
it excites a pigment, or to what we will refer more abstractly as “site”, and since the system
encompass many of these sites, we can refer to it as a multi-site system. The exciton then
can transfer from one site to the other, making its way to the reaction center where charge
separation is initiated. As classical diffusion fails to describe important quantum phenom-
ena, such as quantum coherence [3], the implementation of quantum dynamical approaches
becomes ubiquitous when aiming to describe such processes [4].

Over the past decades, an effort has been made to understand the dynamics of LH sys-
tems [5], where analytical solutions have been found for simple isolated systems [6]. However,
a full description is only possible when all the components are taken into account. It then
becomes pertinent to study, not only the interactions between different sites, but also the
effects of the surrounding environment on the system [7].

The coupling of these so-called open systems can be seen as an interaction of the quan-
tum system with the environment acting as a thermal bath [8]. These open systems can
be studied under a reduced density matrix formalism, yielding analytically correct results
when the Hamiltonian and spectral densities are specified beforehand [9][10]. One of such
methods is the so-called Hierarchy Equations Of Motion (HEOM) [11][12][13]. The HEOM
are a set of infinitely many coupled equations that describe a Non-Markovian time evolution
of a system-bath interaction. Since this method does not assume a relative strength of the
system effect on the bath, known as “quantum feedback”, it can correctly describe quantum
coherence in the system with arbitrary accuracy [14]. Nevertheless, this method becomes
computationally unfeasible with the increase of accuracy and bath complexity.

Consequently, a less expensive alternative based on a semi-classical approach can be em-
ployed. One of the most widely used methods is the mean-field Ehrenfest dynamics that
uses the time-dependant Hamiltonian of the system to solve the time dependent Schrödinger
equation [15][16]. The exciton dynamics can then be obtained from the resulting wave func-
tion by averaging over an ensemble of realizations to obtain physically meaningful results
[17]. In this thesis we implement a variant of the Ehrenfest dynamics based on a high temper-
ature limit approximation and the assumption that the quantum feedback can be neglected.
This method is known as Numerical Integration of Schrödinger equation (NISE). In NISE,
the effects of the bath on the system are simulated through time-dependant fluctuations in
the site energies. For the aforementioned assumptions, an important relation arises between
the autocorrelation of these fluctuations and the spectral density of the bath Hamiltonian
[2][18][19].
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Generating site fluctuations that follow a desired spectral density would allow for the
calculation of the time-dependant Schrödinger equation without explicitly calculating the
classical bath trajectory [8]. Until now, this has only been possible for simple spectral
densities, or through methods yielding inaccurate results. In this thesis, I am interested in
the implementation of an algorithm based on random sampling of white Gaussian noise and
the Discrete Fourier Transform (DFT). This will allow us to generate these site fluctuations
with an arbitrary spectral density. Further, I will investigate its accuracy when employed
in population dynamics, the parameter regimes over which it yields feasible results when
compared to methods such as HEOM, and its consequent limitations. Such implementation
would enable more complex and accurate calculations of system-bath interactions, resembling
the ones occurring in nature, specifically those modeled by Lorentzian spectral densities.
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2 Theory

2.1 NISE

Due to the size of the molecular systems we aim to study, it is useful to split the Hamil-
tonian describing the compound system Ĥ into the system, bath and system-bath coupling
components, ĤS, ĤB and ĤSB, respectively.

Ĥ = ĤS + ĤB + ĤSB (2-1)

We look at a system made up of M coupled sites, with site energies Ei, and coupling
between sites i and j of Vi,j. This yields the time independent Hamiltonian given by [17]:

ĤS =
∑
i

Ei |i〉 〈i|+
∑
i 6=j

Vi,j |j〉 〈i| (2-2)

One the other hand, the bath is described by a collection of harmonic oscillators ζ, given
by [17]:

ĤB =
∑
ζ

p̂2
ζ

2mζ

+
mζω

2
ζ x̂

2
ζ

2
(2-3)

With p̂ζ , x̂ζ ,mζ and ωζ the momentum, position, mass and frequency of the bath oscillator
ζ respectively. The frequencies ωζ are limited by a spectral density obtained experimentally
or through MD simulations [8].

The coupling Hamiltonian between system and bath can be seen as a sum of products
of a system operator, assumed to be site diagonal for excitonic systems [18], and a bath
operator Φ̂i acting on the diagonal entries, thus, leaving unaltered the couplings. Then ĤSB

is given as in [17]:

ĤSB =
∑
i

Φ̂i |i〉 〈i| (2-4)

If in addition, we assume Φ̂i to be linear in the bath coordinates, i.e. [17]:

Φ̂i =
∑
ζ

ciζ x̂ζ (2-5)

Where the coefficients ciζ define the coupling between the site i and bath oscillator ζ as
dictated by the spectral density. Thus, the Hamiltonian of the coupling becomes:

ĤSB =
∑
i

∑
ζ

ciζ x̂ζ |i〉 〈i| (2-6)

Looking now at the time-dependant Schrödinger equation for the complete system and
implementing equation 2-1, we obtain:

i~
∂

∂t
|ψ(t)〉 =

(
ĤS + ĤB + ĤSB

)
|ψ(t)〉 (2-7)
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Next, we split this expression into one equation propagating the system coordinates, and a
second one propagating the bath coordinates [8]. Here we assume the propagation of the bath
trajectory to be independent of the system, i.e. quantum feedback can be neglected. Under
this approximation, if the bath starts in equilibrium, it will remain in equilibrium [18]. And
even though this might restrict our calculations to cases where the system-bath couplings
are small, it allows us to calculate the bath dynamics before the quantum calculations of the
system are performed. As a result, we obtain [17]:

i~
∂

∂t

∣∣ψB(t)
〉

= ĤB

∣∣ψB(t)
〉

(2-8)

Then, after taking the expectation value with respect to the bath, equation 2-7 becomes
[17]:

i~
∂

∂t

∣∣ψS(t)
〉

=
(
ĤS +

〈
ψB(t)

∣∣ ĤSB

∣∣ψB(t)
〉) ∣∣ψS(t)

〉
(2-9)

Using equations 2-2 and 2-4 and integrating out the bath coordinates, we can then define
an effective Hamiltonian [17]:

Ĥeff
S = HS +

∑
i

〈
ψB(t)

∣∣ Φ̂i

∣∣ψB(t)
〉
|i〉 〈i|

=
∑
i

(Ei + ∆Ei(t)) |i〉 〈i|+
∑
i 6=j

Vi,j |j〉 〈i|
(2-10)

In which the site fluctuation term ∆Ei(t) =
〈
ψB(t)

∣∣ Φ̂i

∣∣ψB(t)
〉

is the result of the cou-
pling of the environment on the system.

To determine this time-dependant fluctuations, the bath trajectory given by equation
2-8 needs to be solved simultaneously with the Schrödinger equation of the correspondent
system by means of Ĥeff

S . These trajectories usually come from MD or other classical sim-
ulations. Instead, in this thesis an enveloping algorithm is employed to generate these site
fluctuations, following a desired autocorrelation function related to the spectral density of
the bath. With this addition, explicitly calculating the bath trajectories is no longer needed,
which results in less computationally expensive simulations.

We proceed to solve the time-dependent Schrödinger equation in small steps ∆t where
Ĥ(t) is assumed to be constant [8]. This is done by defining a so-called time evolution
operator that takes the wave function from t to t+ ∆t [17]:

U(t+ ∆t, t) = exp

(
−iĤ(t)

∆t

~

)
(2-11)

Going to the eigenbasis, this operator simplifies to:

Ũ(t+ ∆t, t) =
∑
α

exp

(
−iεα(t)

∆t

~

)
|α〉 〈α| (2-12)
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With α the eigenstate and εα its eigenvalue. The eigenvectors of the Hamiltonian H(t)
can be used to define the transformation matrix C(t) between site and eigenbasis. Starting
from the site basis, the time evolution of the wave function is [6]:

ψ(t+ ∆t) = C†(t)Ũ(t+ ∆t, t)C(t)ψ(t) (2-13)

Alternatively, we can define the time evolution in the eigenbasis as [6]:

ψ̃(t+ ∆t) = Ũ(t+ ∆t, t)C(t)C†(t−∆t)ψ̃(t)

= Ũ(t+ ∆t, t)S(t)ψ̃(t)
(2-14)

Where S(t) = C(t)C†(t − ∆t) is the non-adiabatic coupling. The population dynamics
can be obtained by taking the absolute value squared of the wave function from 2-13 or 2-14.

To attain physically meaningful results, one must verify the correct order of the eigen-
values in C(t −∆t) and C(t), and to average over different realizations of site fluctuations
when calculating the trajectory of the wave function. The latter is done to obtain physically
meaningful results, due to the thermodynamic nature of the fluctuations.

2.2 Autocorrelation and Spectral density

The degrees of freedom (DOF) of the bath, i.e. position and momentum, are assumed to
be harmonic as discussed in the previous section. As a result, in the high temperature limit
their expectation values follow Newton’s classical equations of motion, just as they would
do for a classical oscillator, and therefore, the quantum bath can be approximated by a clas-
sical one. While useful for our calculations, this assumption makes the thermal equilibrium
distribution of the sites deviate from the expected Boltzmann distribution [16].

By looking at equation 2-4, the frequency-dependency of the coupling between site i and
the thermal bath can be fully described by the spectral density defined as [20]:

Ji(ω) =
~
π
JCL,i(ω) =

1

2

∑
ζ

c2
iζ

mζωζ
δ(ω − ωζ) (2-15)

Special attention must be payed to the relation between the definition used here for the
spectral density Ji and the one in the Caldeira-Legett model JCL,i [17].

The time-dependant fluctuations ∆Ei(t) of the site energies described in equation 2-10
can be used to calculate the autocorrelation defined as [8]:

Ci(t) = 〈∆Ei(τ)∆Ei(t+ τ)〉 (2-16)

Denoting the inverse temperature by β = 1/(kBT ), the relation between Ci(t) and Ji(ω)
is given by [4] [18] [20]:

7



Ji(ω) =
2

π~
tanh

(
β~ω

2

)∫ ∞
0

Ci(t) cos (ωt)dt (2-17)

and its converse:

Ci(t) = ~
∫ ∞

0

Ji(ω) coth

(
β~ω

2

)
cos (ωt)dω (2-18)

These relations result crucial when combining the results from MD with dissipative ex-
citon dynamics [20]. Applying the aforementioned high temperature limit, equation 2-17
becomes:

Ji(ω) =
βω

π

∫ ∞
0

Ci(t) cos (ωt)dt (2-19)

Compared to equation 2-17, this expressions results in temperature-independent spectral
densities [20].

The discrete autocorrelation of the site energies can be determined from a time series of
these fluctuations computed at times tl as [20]:

Ci(tl) =
1

N − l

N−l∑
k=1

∆Ei(tl + tk)∆Ei(tk) (2-20)

Where N is number of sample points taken and l ∈ [0, N − 1]

2.3 Fourier transform

In this section one of the most useful and versatile mathematical artifacts is introduced:
The Fourier Transform

While simple periodic signals can be fully described by their frequency, amplitude and
phase, often times the functions describing physical phenomena require a more elaborated
approach. The Fourier transform allows us to analyze these complex functions by decom-
posing them into sums sinusoidal waves. Among the advantages this method provides, we
are interested in its applicability to continuous, discrete, periodic and aperiodic functions.

2.3.1 Conventions

When working with Fourier transformations, it is imperative to verify the conventions used
in the derivation of the formulas, specifically on the normalization employed. In the entirety
of this work, the following definition of the Fourier transform is used [21]:

F [x(t)] := X(ω) =

∫ ∞
−∞

x(t)e−iωtdt (2-21)

And for its counter-part, the Inverse Fourier Transform:
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F−1[X(ω)] := x(t) =
1

2π

∫ ∞
−∞

X(ω)eiωtdω (2-22)

2.3.2 Discrete Transform

When computing or working with real data, the focus of interest shifts from the conventional
continuous functions, to their computationally-accessible discrete counterpart. Such idea is
at the heart of the difference between analog and digital signal processing. Here, the term
“signal”, coming from signal processing literature, will be used interchangeably with the
concept of “function”.

While analytical expressions can be obtained to confirm our results, it is through discrete
methods that our computers calculate, and later model, the natural phenomena described
by our equations. Besides discreteness, one must consider the duration of the signal, where
these can be of finite or infinite length. Several combinations can be attained depending on
the nature of the data available, but on the following we will focused on the type of signals
that are discrete in time and frequency domain. This will assure that they are also finite
in both domains [21]. Motivated by this, I now introduce you to the discrete-version of the
Fourier transform: Discrete Fourier Transform (DFT).

For a discrete sequence of N evenly spaced samples of a time domain signal, the DFT is
defined as [22]:

X[k] =
N−1∑
n=0

x[n] exp

(
−i2πkn

N

)
(2-23)

Where ∆t represents the time step , x[n] the current sample for t = n∆t, and X[k] the
DFT for frequency ωk = k∆ω for k ∈ [0, N − 1] and ∆ω = 2π

N∆t
.

The inverse function is then defined as [22]:

x[n] =
1

N

N−1∑
n=0

X[k] exp

(
i2πkn

N

)
(2-24)

X[0] is the sum of the signal, while X[1 : N/2] contains the positive-frequency terms and
X[N/2 + 1 : N − 1] contains the negative frequency terms in order of decreasingly negative
frequency. If the input signal is real and even, its DFT is also real and even [21]. For these
cases, often times only the positive frequencies (first half) of the data are taken into account
when plotting and performing calculations.

Additionally, the Nyquist-Shannon sampling Theorem, or Nyquist criteria [22], defines
the maximum frequency a sample signal can contain in order for it to be reconstructed. This
is the so-called Nyquist Frequency and is equal to half the sampling frequency:

ωny =
N

2
∆ω = 2π

1

2∆t
=

π

∆t
(2-25)
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2.3.3 Continuous-Discrete Relation

A periodic signal x(t) with a period T can be expressed as a Fourier series with the kth

coefficient defined by [23]:

X(ωk) :=
1

T

∫ T

0

x(t)e−iωktdt, k = 0,±1,±2, ... (2-26)

Now, sampling the continuous signal through a continuous-time impulse train we obtain:

xs(t) := x(t)∆t
∞∑
−∞

δ(t− n∆t) (2-27)

with δ(t) the Dirac-delta function. Then, substituting this in equation 2-26 and choosing
the sampling time ∆t such that N = T/∆t [23]:

Xs(ωk) =
1

T

∫ T

0

xs(t)e
−iωktdt

=
∆t

T

N−1∑
n=0

x(n∆T )e−iωkn∆t

=
1

N
DFTN,kx(n∆t)

(2-28)

From where the final relation between the DFT output signal and sampled continuous
function is obtained as:

Xs(ωk) :=
1

N
XP (2-29)

2.3.4 Fast Fourier Transform

While the DFT is remarkably useful to perform numerical approximations, it becomes com-
putationally expensive with the increase of data points. From this issue, an efficient algorithm
that exploits the symmetry properties of the signal to calculate the DFT was introduced by
Cooley and Tukey in their 1965 paper [22][24]. With this, the time complexity of the im-
plementations decreased from O(n2) for the DFT, to O(n log(n)) [25]. This algorithm was
coined as Fast Fourier Transform (FFT).

2.4 Power Spectral Density

The enveloping algorithm uses the power spectral density S(ω), to ensure the correct frequency-
domain behaviour of the energy fluctuations generated. Therefore, an analytical expression
for this should be readily available. However, when working with molecular systems such
as LH complex, it is rather the spectral density J(ω) the function used to describe the fre-
quency dependence of the bath-system interactions. Due to this discrepancy, it is necessary
to obtain an explicit relation between these two for its posterior implementation.
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The autocorrelation C(t) of an assumed ergodic signal x(t) and its power spectral density
S(ω) are related by the Einstein-Wiener-Khinchin theorem [26]. This theorem states that
C(t) is the Fourier transform pair of S(ω) as given by:

S(ω) =

∫ ∞
−∞

C(t)e−iωtdt (2-30)

In the current implementation, this relation will remain valid when the variance κ2 of
the random samples drawn satisfies κ2 = 1. Details are shown in the appendix.

From the definition of the autocorrelation function in equation 2-16, we see that C(t) =
C(−t). Notice that this expression might not have a direct meaning when working with
discrete, positive time series. However, this implies that the autocorrelation is an even
function, which in turn guarantees that S(ω) is real [26], and allows equation 2-30 to be
rewritten as:

S(ω) = 2

∫ ∞
0

C(t) cos (ωt)dt

Using this expression, together with equation 2-19, yields the desired relation:

=⇒ S(ω) =
2π

βω
J(ω) (2-31)

2.4.1 Theoretical Spectral Shapes

Analyzing atomic transitions, along with their associated energy differences and frequencies,
is at the heart of spectroscopy. This is done through the study of their spectral line shape,
also known as spectral density (SD). Here, the SD is used to describe the coupling between
sites and the thermal bath, as well as the autocorrelation of the energy fluctuations.

Drude

To first test the algorithm against previously established benchmarks [27], energy fluctu-
ations following a “simple” Drude spectral density were generated. Their autocorrelation is
described by an exponentially decaying function for site i as in [17]:

Ci(t) =
2λi
β
e−γit (2-32)

Under the harmonic bath and high temperature limit assumptions discussed previously,
the autocorrelation is related to the spectral density as in 2-17. Here, this yields a Drude
SD:

Ji(ω) =
2

π
λiγi

ω

ω2 + γ2
i

(2-33)

Where γi is the inverse of the correlation time τ and relates to the width of J(ω), while
λi stands for the reorganization energy of the bath and can be calculated as [17]:
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λi =

∫ ∞
0

Ji(ω)

ω
dω (2-34)

This last equation is a general relation valid for any spectral density function.

Its power spectral density follows from 2-31:

Si(ω) =
4

β
λiγi

1

ω2 + γ2
i

(2-35)

For the posterior analysis, it is useful to calculate an expression for the maximum value
and associated frequency of equation 2-33. This is given by the first derivative method as:

ωmax = γi

Ji(ωmax = γi) =
λi
π

(2-36)

Lorentzian

Nonetheless, experimental data and theoretical calculations demonstrate that in real
physical systems, the spectral density is not generally described by merely smooth shapes as
it is assumed when implementing Drude forms [20].

Experimentally calculated spectral densities can be modeled using a combination of
Drude and Lorentzian functions as done by S. Maity et al. in [28]. The former, describes
the low frequency modes due to coupling with the environment, implemented as an over-
damped Brownian oscillator. The latter accounts for the high-frequency modes through
under-damped Brownian oscillators, and its SD is given by [29]:

Ji(ω) =
2~
π

∑
k

skω
3
k

ωγk
(ω2

k − ω2)2 + ω2γ2
k

(2-37)

Where sk are the Huang-Rhys (HR) factors and ωk the corresponding frequencies. The
broadening factor (to some extended arbitrary [29]) γk controls the width of the individual
peaks, and therefore, defines their overlap. The power spectral density is correspondingly:

Si(ω) =
4~
β

∑
k

skω
3
k

γk
(ω2

k − ω2)2 + ω2γ2
k

(2-38)

For the sake of completeness, it must be mentioned that the autocorrelation of a Lorentzian
follows an exponentially decaying trend, but an analytical transformation is not easily at-
tainable.

Similarly as for the Drude model, the frequency corresponding to the maximum value for
a single Lorentzian peak is calculated using the first derivative method. Here, however, the
solution comes from a quartic equation and is given by:
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ωmax =

√
−
√
γ4
k − 4ω4

kγ
2
k + 16ω2

k − γ2
k + 2ω2

k

6
(2-39)

Gaussian

Alternatively, real spectral densities can be approximated by Gaussian and Lorentzian
functions representing the low and high frequency components of the spectrum, respectively
[30].

For noise following a Gaussian SD, the autocorrelation expression is given by [31]. Under
slight modifications, justified by our Fourier transform normalization, the autocorrelation is:

Ci(t) =
~γi
β
√
π
e−(γt)2 (2-40)

With spectral density:

Ji(ω) =
~ω
2π
e−(ω/2γi)

2

(2-41)

And power spectral density described by another Gaussian function, as expected from
the Fourier transform of a Gaussian:

Si(ω) =
~
β
e−(ω/2γi)

2

(2-42)

Here, again, γ = 1/τ corresponds to the width of the peak and inverse of correlation time.

The ~ was added to each function to obtain the right units. For a more detailed expla-
nation see “Units” section.

13



3 Implementation

3.1 Algorithm

Avoiding the explicit calculation of the bath trajectories when computing the time-dependant
Schrödinger equation allows for faster simulations. To this end, we want to generate energy
fluctuations that follow an arbitrary autocorrelation and that are related to the spectral
density of the thermal bath as in 2-19. This would not only decrease the computational ex-
pense, but also enable the study of more general interactions, as compared to the restricted
simulations done before [13][17][27].

In the context of energy-site fluctuations generation, we will refer to these fluctuations
as Noise, denoted by η(t). Particularly, Noise following a desired autocorrelation is known
as Structured or Colored Noise. Our goal is to generate a time series of this noise for N
equally-spaced time steps with a specific autocorrelation C(t) = 〈η(τ)η(t+ τ)〉 computed as
in 2-20.

Different methods to create trajectories following specific models have been developed
previously. For instance, [27] describes an algorithm that implements a Gaussian random
number generator with exponentially correlated numbers, thus achieving a Drude spectral
density.

Nevertheless, as discussed previously, if we aim to model more complex physical processes,
noise with a broader domain of autocorrelations should be attained. Herein I implement an
enveloping algorithm proposed in [31] to obtain colored noise with any desired spectral
density. The general algorithm is as follows:

Algorithm 1 Enveloping algorithm: Structured Noise

1: Generate white Gaussian noise W (tl) by sampling N times from i.i.d Gaussian variables,
each with mean µ = 0 and variance = κ2

2: Calculate the Fourier transform of the sequence W (tl): F [W ](ω)
3: Envelope, i.e. multiply the frequency spectrum by the square root of the desired power

spectral density:
√
S(ω)F [W ](ω)

4: Calculate the inverse Fourier transform to obtain the noise trajectory:

η(tl) = F−1
[√

S(ω)F [W ](ω)
]

(tl)

Ensure: S(ω) = S(−ω)

See appendix for a proof of correctness of this algorithm.
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3.2 Units

Surprisingly enough, one of the first challenges to overcome at the moment of implementing
the different computational algorithms and methods for quantum dynamics simulations, is
the correct use and consistency of the units.

Contrary to what an undergraduate physics student is exposed to, Joules (J) is often
times not the default unit to express energy values across the different specialization areas in
physics. Spectroscopists predilection is the inverse cm (cm−1), motivated by the relation of
the wavenumber and the energy of the associated photon. On the other hand, semiconductor
experts would rather express the energy values in electronvolts (eV). Similarly, several other
units can be used, e.g. fs and THz. Due to this, one ought to verify the units employed,
based on the context, before any calculation.

Above all, one of the most frequent calculations is the conversion from eV to cm−1, and
viceversa. Using the equation that relates wavelength and energy of a photon: E = hc/λ,
with E in eV, h in eV·fs, c in ms−1 and λ in cm−1, one obtains the following relation:

[eV] = 1.239× 10−4 [cm−1] (3-43)

To keep the units consistent across the whole implementation, the following list was used
as guidance when working with the different parameters:

• The time step for the generation of energy trajectories ∆t is in the order of fs to mimic
the behavior of molecular systems. Consequently, the angular frequencies employed
in the noise generation and spectral density calculations have units of rad/fs and the
inverse of the correlation time γ has units of 1/fs.

• One should recall that radians are dimensionless by definition, so expressions like
ω2 + γ2 can be written both with units of 1/(fs)2 or rad2/(fs)2.

• Since the autocorrelation functions have the same units as ∆E2, they are expressed in
(eV)2. As a result, the spectral densities and the power spectral densities have units
of eV and (eV)2·fs, respectively.

• To achieve the right units, the reorganization energies must be expressed in eV, the
Boltzmann Constant kB in eV·K−1, the temperature in K, and the (reduced) Planck
constant in eV·fs.

• Only when mentioned explicitely, the energy values will be changed to cm−1 by chang-
ing the units of the noise trajectories and the Boltzmann constant to cm−1, following
the calculation derived above.

The following online-tool developed by the Nanophotonics group at Rice University can
be used to make direct conversions between the different energy units [32].

See appendix for a table with the numerical values for the different constants used.
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3.3 Noise Generation

The noise generation algorithm, as well as the autocorrelation, spectral density and popula-
tion dynamics calculations were implemented in Python 3.9 [33] using the NumPy [34], SciPy
[35], mpmath [36] and PyTorch [37] libraries. The NumPy library provides the functions nec-
essary to work with multi-dimensional arrays, as well as the random number generation and
the calculation of the Fourier transformations. SciPy contains several modules used widely
in scientific and technical computing, among which we implemented the 1-D interpolation
method. Mpmath is a python library used for the real and complex floating-point arithmetic
with arbitrary precision. Its functions for numerical integration, such as quadrature, were
implemented along with the algorithm suggested when integrating highly variable functions.
Finally, PyTorch’s library is build for machine learning algorithms. This was implicitly im-
plemented in the NISE algorithm provided by Yannick Holtkamp in [8].

The noise algorithm is implemented in a “batch-manner”. This means that the generated
data was stored in a 3-dimensional tensor where the second dimension corresponds to the
time component of the noise trajectory, the first dimension contains the different realiza-
tions of the noise, and the third dimension contains the data for different sites. The reason
for this is twofold. First, this approach allows for the use of more computationally-efficient
calculations, due to the decrease in memory access operations needed. And second, this was
done as an alternative to other computational methods such as “windowing” [20] for the
generation of uncorrelated time samples of the noise trajectory.

Using the theory developed in the previous sections, and after defining the correspondent
numerical constants and parameters for a specific shape of the power spectral density S(ω),
the noise generation algorithm is implemented as:

Algorithm 2 Noise Generation

Input
Time Length: T
Realizations: Reals
Number of Sites: Sites
Time step: dt
Parameters for S(ω): Sk

Output
3D tensor containing the Noise trajectories η

Before noise generation:

1: Define a Power spectral density function that takes as input Sk and frequencies ω: Sω,k
2: Define N = int(T/dt+ 1)
3: Create an empty tensor η with dimensions (Reals×N × Sites)
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Noise generation:

1: Draw random samples from a normal Gaussian distribution with mean µ = 0 and vari-
ance κ2 = 1. Size of White-Gaussian noise tensor W : ((Reals ∗ Sites)×N)

2: Calculate the DFT of matrix W . Include the correcting factor discussed in 2-29:

FW =
F [W ]√
dt

3: Generate the frequencies associated to the DFT of W : ω in rad/fs
4: Input ω and Sk in Sω,k and Envelope the frequency spectrum by the square root of S(ω):√

Sω,kFW
5: Calculate the inverse Fourier transform and take the Real part to obtain the noise tensor:

η0 = Re
{
F−1

[√
Sω,kFW

]}
6: for i in [0,Sites-1] do
7: Use the data of the 2D tensor with size Reals×N coming from the (i ∗Reals)th →

((i+ 1) ∗Reals)th rows of η0 to fill the ith site in η
8: end for

The DFT is implemented by calling the NumPy function fft.fft(). As explained
in the relevant documentation [34], this function implements the Fast Fourier Transform
algorithm, along with the normalization conventions explained in the theory section. The
calculations of the frequencies are done in a similar fashion by using the NumPy function
fft.fftfreq() that takes as arguments the length N of the time series and the sam-
pling time step dt to produce the right frequencies, as defined in equation 2-23. For the
implementation, these frequencies are multiplied by a factor of 2π to obtain the the correct
units.

Figure 1: Single realization of the colored noise trajectory following a Drude spectral density.

The ith component of the third dimension from the resulting matrix η, with dimensions
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as explained above, is added to the diagonal elements of the ith site Hamiltonian, for the
posterior calculations of population dynamics using NISE. A more detailed explanation can
be found on the “Population Dynamics” section below. This algorithm is general in essence,
since all one needs to do to generate noise following the different spectral densities is to adjust
the input parameters and redefine the power spectral density function Sω,k accordingly. One
realization of the noise trajectory generated for a single site is shown in figure 1.

3.4 Autocorrelation

The essential component of the whole algorithm, i.e. the generation of the noise, has already
been explored. Fundamentally, this fluctuations can be already implemented in the NISE
algorithm to calculate the population dynamics of a multi-site system. However, it is highly
non-trivial to discern whether the noise generated follows the desired autocorrelation and
spectral density. For this reason, I will now introduce an algorithm that employs equation
2-20 to calculate the C(t) for a 2-dimensional matrix containing the noise trajectories of a
single site.

Algorithm 3 Autocorrelation - Calculation

Input
2D Noise Matrix of dimensions (reals×N): ηi

Output
1D Autocorrelation Array: C

Before Calculation:
Read Reals from length of ηi first dimension
Read N from length of ηi second dimension

1: for j in Reals do
2: for l in N do
3: for k in N − l do
4: Multiply the (j, l + k) and the (j, k) elements of ηi and
5: Add the result to the accumulated sum of the previous multiplications
6: end for
7: Divide the total Sum by (N − l)
8: Assign it to the (j, l) element of C
9: end for

10: end for
11: Average over all the different realizations (average over dimension 1)

Despite how cumbersome the algorithm might seem, it is nothing else but the imple-
mentation of equation 2-20 for different realizations of the noise trajectories across N time
steps. For the actual implementation, the for loops were exchanged by vectorized methods
and operations, such as “slicing”, since vector calculations are optimized for Python due to
its architecture. Such implementation increased the computational speed of the algorithm
significantly.
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Figure 2: Complete autocorrelation C(t) for noise following a Gaussian spectral density.

From the symmetry of the autocorrelation calculated, as depicted in figure 2, one can
deduce that there are some additional considerations to keep in mind when performing
posterior operations using the noise and the autocorrelation. This is not an unexpected
result, but rather, a property predicted by the symmetries of the DFT method implemented.
As explained in the theory section, the DFT of a real and even signal, is another real and
even frequency domain signal, where the positive frequencies correspond to the first half of
the array and the second half corresponds to the negative frequencies. This relatively simple
fact explains our observations and justifies our next step: the use of exclusively half of the
points generated for the noise trajectories and autocorrelations.

3.5 Spectral Density

Once the autocorrelation has been calculated and only half of the time steps are kept, the
next step to follow is the study of the agreement between the theoretical spectral density
and the one calculated from the colored noise generated. For this calculations, we are once
again drawing upon the high temperature limit assumptions, aware of the drawbacks this
carries. Such assumptions allows us to relate the already calculated autocorrelation C(t)
with the desired spectral density J(ω), implemented as a cosine transform times a thermal
factor, according to equation 2-19. The following algorithm makes use of this relation.
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Algorithm 4 Spectral Density - Calculation

Input
1D Autocorrelation array: C
time step of noise trajectory used to obtain C: dt
Accuracy degree given by integration intervals: Inter

Output
1D Spectral Density Array: J
1D array containing the energy values X = ~ω associated to the J array.

1: Read Ncut from length of C. Note that here Ncut = N/2, as argued previously.
2: Define fundamental frequency dω as

dω =
2π

Ncutdt

3: Calculate array ω containing the frequencies ωn = ndω. Bearing in mind the Nyquist
frequency condition, the maximum allowed frequency is:

ωmax = dω
Ncut

2
=

π

dt

Such that n ∈ [0, Ncut/2]
4: Define the time array to use for interpolation. These should be the times corresponding

to the autocorrelation points, hence: t = kdt, k ∈ [0, Ncut]
5: Define a function from the interpolation of t and C(t).
6: Use the function obtained by interpolation, along with the whole array t and a given

frequency ωn to implement equation 2-19 with the help of a numerical integration scheme.
Use Inter to control the degree of accuracy of this integration, based on the oscillatory
nature of the data.

7: Repeat this last step for each of the frequencies ωn in array ω to obtain J(ω)n
8: Calculate array X = ~ω by direct multiplication.

Notice that while the maximum frequency in the array ω is relatively arbitrary, it still
ought to follow the Nyquist condition. In fact, the Nyquisit frequency ωmax = π

dt
is the

same we would have obtained had we performed the calculations with N points instead of
Ncut. This is as expected since the Nyquist frequency depends only on the sampling rate 1/dt.

In this implementation the interpolation was done with the help of the SciPy class in-
terpolate.interp1d() [35], using a cubic spline interpolation. This function was em-
ployed along with the mpmath.quad() integration scheme from mpmath to perform the
integration relating C(t) and J(ω) with the correspondent multiplication of the thermal
factor βω/π. Following the standards for similar molecular dynamic simulations, our calcu-
lations assumed room temperature conditions, i.e. T = 300 K [17][20].

Moreover, a crucial contribution came from the integration method implemented for
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highly variable functions as discussed in the mpmath documentation [36]. Due to the length
and frequencies involved in our cosine transform, standard numerical integration schemes
failed to give feasible results, often diverging from the theoretical spectral density. Alterna-
tive approaches included the built-in fftpack.dct() function from scipy, Simpson’s rule
for numerical integration, and DFT based on symmetries. Details are found in appendix.
However, it was the mpmath scheme that attained the best results, at a reasonable compu-
tational cost. The idea and results obtained are discussed in the results section.

Figure 3 shows the comparison between the theoretical and the calculated spectral density
for a Drude simulation.

Figure 3: Spectral density for colored noise following a Drude shape. dt = 0.1 fs, Realizations
= 2000, T = 400 fs.

3.6 Population Dynamics

After verifying the validity of the generated noise by comparing its autocorrelation and spec-
tral density with their theoretical counterparts, the new aim was to use this fluctuations in
the implementation of the NISE algorithm in order to calculate the population dynamics of
a multi-site system.

As discussed in the theory section, the coupling of the thermal bath acting on the system
can be understood through the fluctuations of site energies in the effective Hamiltonian,
equation 2-10. Recalling that these fluctuations act exclusively on the site energies, we can
simply add the noise tensor to the main diagonal terms of the system Hamiltonian through
tensor operations to obtain the time dependent Hamiltonian. From there on, the implemen-
tation of the NISE is executed as described by Y. Holtkamp in [8]. This yields the population
dynamics for the different sites.

Without the implementation of thermal corrections, in the long-time limit the system
will approach an even distribution of the populations, contrary to the theoretically-correct
Boltzmann distribution. The figure below depicts a population dynamics for a 4-site system
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using a Hamiltonian with values within a reasonable range to resemble a real LH comlex.
The values were obtained from [38] and can be found in the appendix. The simulations were
performed under noise following a Drude SD.

Figure 4: Population Dynamics for a 4-site system under the influence of bath fluctuations
following a Drude Spectral Density

For the usage of the noise in exciton dynamics, the units of the resulting fluctuations
must be adapted to show the expected results. This is done by converting from eV to cm−1

as explained in the Units section.
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4 Results

4.1 Previous Benchmarks

Generation of structured noise has been possible before by means of different mathemati-
cal and computational mechanisms [17][27]. And while these have been tailored to generate
fluctuations with rather simple spectral densities, such ad-hoc methods have settled the foun-
dations for the implementation of more general algorithms, like the one herein presented. In
the first testing-stage the enveloping algorithm underwent, the previously established bench-
marks were replicated under different set of parameters.

Gaussian Generation

From here on, the number of realizations over which the energy fluctuations were aver-
aged will be denoted as R and the total time of each trajectory will be denoted by T in fs,
not to be confused with the temperature T in K.

A simple model, yet widely applicable, is the approximation of the spectral density by a
Gaussian function, or rather by linear combinations of these. Here, a single Gaussian was
simulated for a variety of parameters, including different time steps and total times. The
results are shown in figure 5.

Figure 5: Numerical estimations for Gaussian spectral density generated for different set of
parameters

Even though a quantitative measurement was not implemented, the accuracy of the cal-
culated spectral density can be easily observed from the depicted comparison. The agreement
was high for a big set of parameters, and for the simulation done using dt = 0.1, the calcu-
lated SD is indistinguishable from the theoretical function.
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Drude Generation

Next, following the benchmark proposed by M. Aghtar et al. [17], a model suitable for
both the density matrix formalism and wave packet dynamics approach was explored. Here,
the frequency behaviour of the harmonic bath was approximated by a Drude spectral shape.
Such approximation allowed to test the noise generation under conditions that resemble a
real molecular system, e.g. light harvesting system.

The time-domain counterpart of a Drude function is an exponentially decaying autocor-
relation as seen in 2-32. As a result, relatively small time steps were needed to obtain a
high sampling rate that followed the fast decay of C(t). Further, as shown in figure 6, the
best results were attained when averaging over a considerable amount of realizations, as this
averaged out the fluctuations coming from statistical noise.

Time steps in the order of 1 fs were implemented together with a temperature T =
300 K, reorganization energy λ = 50 cm−1 and autocorrelation time τ = 1/γ = 25 fs for
the comparison of the theoretical and generated spectral density. In order to mimimc the
benchmark proposed by M. Aghtar et al., where a 200 fs long trajectory was employed,
our noise was generated using a length twice as long, to account for the symmetry in the
autocorrelation coming from the DFT methods used.

Figure 6: Numerical estimations for Drude spectral density, generated for different time steps
and number of realizations

While for the calculations using Gaussian SD, a single integration interval was enough,
the high frequency components inherent in the Drude model required the use of at least 20
intervals. Using equation 2-36, the maximum position of the calculated spectral densities
was verified. As explained above and as depicted in figure 6, the best results for a fixed
length and integration intervals were obtained for the smallest dt = 0.1 fs and higher num-
ber of realizations R = 5000, where again the calculated SD is indistinguishable from the
analytical function.
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4.2 New Benchmarks

Figure 7: Comparison of Lorentzian spectral density calculated from generated Noise with
the analytical function, showing an excellent agreement.

Once our algorithm was tested against previously established benchmarks, the focus shifted
towards the simulation of more complex systems and parameter regimes. The high frequency
component of the experimental spectral density for systems like the electron-phonon and vi-
bronic couplings in a FMO complex, can be approximated by a Lorentzian spectral shape
[29][30]. The techniques and intuition acquired through the initial tests were advantageous
when implementing the pertinent changes in the source code.

Parameter-Gauging

Using the values given in [30] for the Huang-Rhys (HR) Sk factors, the respective fre-
quencies ωk and the broadening factor γk, we aimed to simulate the individual vibrational
modes describing the intermolecular interactions of the system therein described. To this
end, we started by gauging the parameters necessary to simulate, first, each of the peaks
separately, in views of a posterior simulation of the 62 peaks all together.

To attain the optimal parameters necessary for the simulation, we proceeded to analyze
the extreme cases: the lowest and the highest energy components. For the former, even
small time steps yielded reasonable results, i.e. a correct peak location as verified through
equation 2-39. However, fastly it became obvious that using lengths in the same order of
magnitude as for Drude simulations was unsuitable if we aimed to obtain enough samples
to describe the narrow peaks in our model. Such observation was supported by the relation
between the sample points N , length T and time step dt: N = T/dt+ 1, as discussed in the
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implementation section. The increase in the length not only entailed higher computational
times, but also resulted in a rapid increase of numerical noise that hindered the evaluation of
the calculated SD. It was here when the the integration scheme was first updated to account
for the highly variable functions we were dealing with. A dedicated subsection describing
the method employed can be found below.

Even though the implementation of this tailored-method was inherently increasing the
computational power needed even further, it allowed to virtually get rid of all the numerical
noise, as long as the number of intervals was adjusted according to the complexity of the
spectral density. From these computations we found that in order to reproduce the lowest
energy peak, the time step could be as high as 25 fs, as given by the Nyquist criteria in
equation 2-25, while the trajectory length required was as high as 30,000 fs. On the other
hand, using the same techniques, we found out that to reproduce the highest peak at 1545
cm−1, noise trajectories with at most 5 fs and length of at least 10,000 fs were required.

(a) (b)

(c)

Figure 8: Dependence of Lorentzian spectral density on the time step, length of trajectory,
and realizations implemented.
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These observations were used as thresholds for the complete implementation of the 62
peaks as depicted in figure 8(a) and figure 8(b). First, short noise trajectories were im-
plemented for different time steps, showing an overall right position of the peaks, but an
inadequate height, due to the low amount of sampling points. Then, big time steps were
employed, showing that even for relatively long trajectories, like 20,000 fs, the Nyquist crite-
ria acted as an upper bound for the peaks we could generate. In addition, once the optimal
parameters were established, these were employed with different number of realizations to
find a compromise between computational cost and accuracy of the spectral density calcu-
lation, the results are shown in figure 8(c). To achieve a compromise between accuracy and
computational speed, the number of realizations was set to 2000.

Figure 9: Numerical Calculation of Lorentzian spectral density for different set of parameters.

The discrepancies in the results for different set of parameters is better depicted in fig-
ure 9. From these observations and based on our theoretical development, the parameters
yielding accurate results, while limiting the computational cost, were found as:

• time step dt = 5 fs

• Trajectory length T = 30,000 fs

• Realizations R = 2,000

• integration intervals = 30

These parameters were used in the generation of noise following the desired Lorentzian
spectral density. Figure 10 compares this results with the theoretical function, where an
excellent agreement is observed.
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Figure 10: Lorentzian spectral density calculated for optimal parameters: dt = 5 fs, T =
30,000 fs and R = 2000

Highly Oscillating functions: Integration Scheme

The spectral density is calculated from the autocorrelation of the noise by effectuating a
cosine transform, as dictated by equation 2-19. Various methods were devised, as explained
in the implementation section, but it was the numerical integration scheme quad() from
mpmath library the one employed in the final implementation, based on its performance.
Due to the oscillatory nature of the functions being integrated, often times this transfor-
mation ended up diverging. As a result, the actual shape of the spectral density became
indistinguishable from the numerical noise this divergence caused.

To account for this, it became imperative to implement a specialized scheme that man-
aged highly oscillating functions. On that account, the methods in the documentation for
numerical integration of mpmath were followed [36]. The simple, but effective, idea consists
on breaking the integration into intervals where the oscillations of the integrand can be ac-
counted by the standard routine given by quad. Increasing the number of intervals becomes
necessary as the number of samples N gets larger, and when the complexity of the spectral
density increases. As expected, the main drawback of this method lies on the increase in the
computational expense with the number of intervals.
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(a) (b)

(c) (d)

Figure 11: Lorentzian spectral density calculated using dt = 5 fs, T = 30000 fs, Reals =
2000. The results are shown for different number of integration intervals

Increasing the intervals gradually decreases the numerical noise up to the point where
only the pure spectral density is left, as shown in figure 11. Here, the spectral density of
62 Lorentzian peaks was calculated from noise generated with dt = 5 fs, T = 30,000 fs, and
averaging over 2000 realizations. Figure 11(a) shows the extreme case where only 2 intervals
are used for the calculation, in which the integration explodes. This results is expected from
the complexity of the aimed spectral density, since it consists of many narrow peaks with
high amplitudes, that in the limit resemble an ensemble of Dirac delta functions. On the
other end, the usage of 30 intervals yielded great results, where no undesired fluctuations
appeared even for the highest frequencies, as depicted in figure 11(d). As a result, this
number of intervals was used as the standard to obtain reliable results when effectuating
posterior calculations.

4.3 Performance in population dynamics calculations

With the polish of the noise algorithm, and after studying its performance in the simulation
of different models and parameter spaces, we went further and studied the behaviour of our
noise when implemented in the calculation of population dynamics through NISE.

29



(a) (b)

Figure 12: Population dynamics for thermal bath with Drude spectral density. Left: Noise
generated by Integral algorithm. Right: Noise generated by enveloping algorithm

First, noise following a Drude SD was implemented to simulate the coupling between the
environment and a 4-site system with different site energies. The values used in the Hamil-
tonian and noise generation can be found in the appendix. The resulting exciton dynamics
from our algorithm is compared in figure 12 against the population of an integral algorithm
that exclusively generates noise with exponentially decaying autocorrelation. This algorithm
was first implemented in Fortran [27] and then adapted to Python by Y. Holtkamp [8]. The
population densities were calculated as explained in equation 2-14, from the wavefunction
obtained by the NISE algorithm [8]. From this comparison, we observe how both algorithms
converge to an even distribution of the populations, as opposed to the appropriate thermal
distribution for such a system given by Boltzmann’s equation. This is the result of the high
temperature limit approximation.

The performance of the enveloping algorithm was further investigated by reproducing
the results obtained in [17] where the population dynamics for a two-level system are cal-
culated using the NISE and HEOM approaches. Once again, the thermal coupling between
the bath and the system is modeled by a Drude spectral density due to its flexibility and
applicability in both formalisms. While fixing T = 300 K, with equal coupling between the
sites V12 = V21 = V = 100 cm−1, equal site energies E1 = E2 = E, and correlation time of
τ = 1/γ = 100 fs, the reorganization energy λ was varied. Since only the difference between
the site energies plays a role in the dynamic of the systems, these were arbitrarily set to 0
cm−1 [17].
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(a) (b)

(c) (d)

Figure 13: Comparison between HEOM and NISE when calculating the population dynamics
of an excited state in a two site system with vanishing energy difference ∆E = 0. Plotted
for different reorganization energies λ

The population of the initially excited state is plotted against time in figure 13. From
this, we notice that while for small reorganization energies NISE and HEOM produce similar
results, the discrepancy for higher λ indicates that in that regime we can no longer ignore
the coupling between the system and bath. Both approaches, however, achieve the evenly
distributed population density predicted by the Boltzmann distribution for ∆E = 0.

Additionally, a similar comparison for a system with ∆E = V is implemented as in
[17]. The results of the dynamics shown in figure 14 demonstrate that for a system with
different site energies, the HEOM calculations approach the theoretical distribution, while
the high-temperature limit makes it impossible for NISE to diverge from the even population
densities.
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(a) (b)

(c) (d)

Figure 14: Comparison between HEOM and NISE when calculating the population dynamics
of an excited state in a two site system with energy difference ∆E = V = 100 cm−1. Plotted
for different reorganization energies

The three set of simulations reliably reproduced the results previously established. There-
fore, confirming the validity of the enveloping algorithm in the calculation of exciton dynam-
ics, particularly for a bath following a Drude spectral density.

Reorganization energy dependence

Going a step further by implementing the structured noise with a Lorentzian SD in the
calculation of exciton dynamics, provided additional information on the limitations and ac-
curacy of the NISE approach and the noise generator itself.

Motivated by the discrepancies encountered between the results of NISE and HEOM
when employing frequencies in the vicinity of the system’s transition frequency, we studied
the behaviour of the two methods when varying the reorganization energy. For this purpose,
we used a system described by the same Hamiltonian employed in the calculations of figure
13. The transition frequency can be calculated from the diagonal entries of the system
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Hamiltonian in the eigenbasis H̃:

H̃ =

[
ε1 0
0 ε2

]
(4-44)

Here, we obtained ~ω12 = ε2 − ε1 = 200 cm−1. Consequently, aiming to stay away from this
frequency, while still obtaining a reasonable damping, we opted for a thermal bath described
by a single Lorentzian peak with HR factor Sk = 0.008 and frequency ωk = 284 cm−1. Based
on the tests performed for the simulation of Lorentzian spectral densities, the noise was
generated using dt = 1 fs, T =10,000 fs and R = 2,000.

As shown in figure 15, and as explained by the proportionality between the reorganization
energy and Sk, the long-time behaviour of the population dynamics in our test system differed
from one method to the other. This discrepancy became more notorious with the increase
of the reorganization energy (increase of Sk). For the case of Sk = 0.012, the results from
the two approaches started to diverge even for small times.

(a) (b)

(c) (d)

Figure 15: Population dynamics of a two site system under a Lorentzian-Bath. Comparison
between HEOM and NISE for different reorganization energies
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This result confirms, once again, that the assumption of low system-bath coupling breaks
down for large values of reorganization energy. Thus, resulting in discrepant population
dynamics calculated from NISE and HEOM. An additional observation drawn from these
simulations is the effect that having resonant frequencies, i.e. frequencies in the vicinity of
the system’s transition frequency, has on our calculations. Where specially the NISE method
fails to depict the rapid transitions of the exciton.

Length-dependent fluctuations

The unexpected results coming from a 1000 fs-long trajectory implemented in our test
system shed some light on another important factor to take into account when implementing
the noise algorithm for NISE calculations: The trajectory of the populations seemed to be
dependent on the length of the structured noise generated.

In response, this dependency of the exciton dynamics was studied by calculating the stan-
dard deviation of energy fluctuations generated using different time lengths. The standard
deviation is plotted in figure 16 against different lengths T . The calculations were done by
using:

σT =

√
(ηT )2 (4-45)

Where the standard deviation σT was then averaged over 2000 different realizations for
every T .

Figure 16: Variation of the magnitude in the structured Noise in dependence of length of
trajectory T
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The results show that the deviation stabilizes after a certain threshold, one which coin-
cides with the minimum length necessary to attain an accurate simulation of the spectral
density calculated from the noise. As a rule of thumb, it is necessary to verify the correct
reproduction of the desired spectral density, when deciding the parameters to employ in the
noise generation used in the calculation of the population dynamics through NISE.
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5 Conclusions

The study of some of the fundamental processes responsible for life on Earth, like the one
carried by Light Harvesting complexes, require a quantum dynamical description, where
the system and the surrounding environment need to be taken into account. The mean-
field Ehrenfest Dynamics methods, based on a semi-classical approach, is an alternative
to study these so-called open systems [15][16]. A variation coined as Numerical Integra-
tion of Schrödinger Equation (NISE) is of special interest throughout this work. In this,
the time-dependent Schrödinger equation is solved using the time-dependent Hamiltonian
of the system, where the time-dependent term corresponds to the energy site fluctuations
and appears as a result of the effect of the bath on the system [8][17]. With the two main
approximations introduced by NISE, a high temperature limit and the neglect of quantum
feedback, the autocorrelation of the site fluctuations is related to the spectral density of the
bath by a cosine transform. This simple, yet crucial, relation allows for the calculation of
the exciton dynamics, when the energy fluctuations are known.

These fluctuations can be obtained through computationally expensive Molecular Dy-
namics (MD) or Quantum Mechanic/Molecular Mechanic (QM/MM) simulations [20][28][39].
However, despite their expensive implementation, often times they do not provide the de-
sired degree of accuracy when replicating the experimental spectral densities. An alternative
method is the use of structured noise generators for the particular scenarios where the spec-
tral density of the bath can be approximated by simple spectral shapes, e.g. Drude and
Gaussian functions [8][17]. This thesis introduced a noise-generating algorithm, based on
the sampling of white Gaussian noise and the implementation of Fourier transformations
[31], that is capable to generate fluctuations following any desired spectral density. With
it, we expected to broaden the calculation of exciton dynamics to systems ruled by more
general system-bath interactions.

Using the proposed algorithm, we successfully replicated the previously established bench-
marks in the simulation of spectral densities. And while the implementation of the Drude and
Gaussian spectral shapes was focused on single peaks, the extensibility of the calculations
lies entirely on computational considerations, such as the increase of integration intervals,
as well as the use of newly gauged parameters. The extension of these simulations to more
complex spectral densities was explored through Lorentzian functions. On this regard, a
spectral density made up of 62 peaks was simulated from experimental data, with the high
frequency components approximated by Lorentzian peaks [30]. Several tests were performed
for different time steps, length and realizations of the noise generated. Additionally, we im-
plemented an integration scheme tailored for highly oscillating functions, where an increase
in the complexity and accuracy of the desired spectral densities resulted in an increase in
the integration intervals. The insight provided by these tests was used along with theoretical
considerations, such as the nyquist criteria and sampling frequency necessary for the highest
and lowest frequencies, resulting in an outstanding agreement between the theoretical and
calculated spectral density.
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The spectral density simulations were useful, not only to verify the validity and scope
of the algorithm, but also to establish the parameter regimes that can be employed when
the noise is used in further calculations. Particularly, the thresholds needed to obtain rea-
sonable SD shapes were taken into account when computing the exciton dynamics. When
these requirements were not fulfilled, the agreement between the populations obtained from
NISE and HEOM was rather poor. These observations were supported by the dependency
of the fluctuations magnitude on the length of the trajectories generated. For our concrete
example, the variations in the magnitude decreased after 10,000 fs, which coincides with the
minimum required length necessary to reproduce the Lorentzian peak in question. Addi-
tionally, the results of the two approaches for the calculation of population dynamics was
assessed under different reorganization energies. The results confirmed the limitations of
the NISE method when implemented in settings with high system-bath coupling, as an un-
avoidable consequence of the underlying assumptions. Another important observation arose
from the use of frequencies close to the transition frequency of the system Hamiltonian. In
these situations, the exciton dynamics show a phenomena known as quantum revival, and
which the NISE approach failed to handle. Such effects can be attenuated with the change
in reorganization energy and broadening factors, in order to modify the damping magnitude.

6 Outlook

With the algorithms and simulations explored in this thesis, we have developed the tools
needed to describe systems governed by a wide variety of spectral densities. The ∆FLN spec-
tra of a FMO complex, for instance, can be approximated by using Gaussian and Lorentzian
peaks for the low and high frequency components, respectively [30]. Alternatively, the spec-
tral density of the LHCII complex can be modeled by a combination of Drude functions,
for the low frequency modes, and Lorentzian functions, for the high frequency modes [28].
Furthermore, the essence of the algorithm herein implemented is the possibility of generating
noise with any arbitrary spectral density, resulting in an even more extensive set of systems
that can be studied through the methods here explored.

Even though additional computational artifacts, like windowing the trajectories [17], were
not implemented, the batch approach and operations used, allowed for the noise trajectories
to be averaged over many realizations. Due to the optimization in vectorized operations
using Python, these simulations were attained at a relatively low computational cost. Spe-
cially, when comparing the results and performance for the simulations here implemented
with those from MD or other classical approaches, the improvement in accuracy and pro-
cessing times becomes evident [28]. There is, however, still a big room for improvement in
the implementation of the enveloping algorithm. Possible speed-up methods can come from
the use of parallel computing techniques employed in the manipulation of the noise tensors.
On the other hand, advanced computational techniques, such as machine learning, could
be implemented when gauging the parameters necessary to simulate new spectral densities.
This would decrease the testing-times, while improving the accuracy, and thus, allowing for
the calculation of a wider domain of spectral densities. An algorithm generating stochas-
tic processes following a given autocorrelation has also been implemented in [40]. There,
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however, the sampled random variables are complex Gaussian distributed. Further, the
implementation does not seem to take into account the thermal correction factors shown in
equation 2-31. An in-depth evaluation of the algorithm therein proposed can be done to
compare its performance and applicability in our calculations against the enveloping algo-
rithm here proposed.

The introduction of this algorithm opens new ways of studying quantum dynamical sys-
tems than until now, were limited to those described by simple SD or inaccurate computa-
tions using MD or QM/MM. With this, the study of population dynamics of systems ruled by
system-bath interactions with a higher complexity is enabled, accompanied by an improved
computational feasibility and accuracy. I am confident the work provided here will open new
horizons in the study of some of the most fundamental processes powering life on earth, like
photosynthesis. The thorough understanding of the dynamics involved in these processes,
would be of utmost importance when aiming to use the same principles in a diverse regime of
applications, such as solar energy conversion, design of electronic circuits, and development
of medicines and drugs [41].

38



7 Acknowledgments

I would like to thank my supervisor Prof. Ulrich Kleinekathöfer for his guidance, support,
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A Appendix

The sections included here serve for deeper explanations or additional information of ideas
discussed in the main text.

A.1 Proof of correctness

From [31], the following section contains the proof that noise generated using the enveloping
algorithm indeed follows the desired power spectral density S(ω), and hence, the spectral
density J(ω). Here, we assume that S(ω) = S(−ω). The averages are performed over the
different noise realizations.

F [〈η(t)η(0)〉](ω) =

∫
e−iωtdt〈F−1

[√
S · F [W ]

]
(t) · F−1

[√
S · F [W ]

]
(0)〉

=

∫
e−iωtdt

〈∫
dω′

2π
eiω

′t
√
S(ω′)F [W ](ω′) ·

∫
dω′′

2π
eiω

′′t
√
S(ω′′)F [W ](ω′′)

〉
=

∫
e−iωtdt

∫
dω′

2π

∫
dω′′

2π
eiω

′t
√
S(ω′)S(ω′′) 〈F [W ](ω′)F [W ](ω′′)〉

The remaining expectation value can be computed explicitly by reducing it to the defining
δ correlation function of white noise.

〈F [W ](ω′)F [W ](ω′′)〉 =

∫
dt1

∫
dt2e

−iω′t1e−iω
′′t2 〈W (t1)W (t2)〉

=

∫
dt1
√
κ2e−i(ω

′+ω′′)t1

=
√
κ2 · 2πδ(ω′ + ω′′)

This resolves the ω′′ integral and allows to use the symmetry of S(ω):

F [〈η(t)η(0)〉](ω) =

∫
e−iωtdt

∫
dω′

2π
eiω

′t
√
κ2
√
S(ω′)S(−ω′)

= F [F−1[
√
κ2S(ω′)](t)](ω)

=
√
κ2S(ω) �

(1-46)

This shows that when κ2 = 1, the Fourier transform of the autocorrelation of η is the
power spectral density S(ω).
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A.2 Constants

This section contains the constants used in the different implementations and calculations.

Constant Numerical Value Units

c 2.99792458 ×108 m·s−1

~ 0.658211951 eV·fs
kB 8.6173303 ×10−5 eV·K−1

kB 0.6950389 cm−1·K−1

The Boltzmann constant was included twice, since the units were adjusted when calcu-
lating spectral densities from noise generated in eV or cm−1.

A.3 Alternative integration methods

For the calculation of the spectral density, the cosine transform was attempted via different
methods other than the one finally implemented. All of them ended up being not used, due
to reasons explained here:

• DCT From Python: Since the relation between J(ω) and C(t) is by a cosine
transform, the function fftpack.dct() from the SciPy library was used to imple-
ment the discrete cosine transform (DCT) [35]. The problems with this approach were
two-folded: First, from the documentation, it was not entirely clear the frequencies
used for the calculations. Secondly, while the general shape was correct, a scaling
factor appeared in all the simulations. If these two problems could be overcome, the
DCT function would be a good alternative as the calculations are faster than with an
interpolation method.

• “Manual” Integration: Using integration routines provided in the SciPy library,
such as the Simpson scheme, the spectral density could be obtained. This, however,
only worked for low frequencies, as for higher components, the integral diverged.

• Fourier Transform Properties: As shown in the derivation of 2-31, the Fourier
transform of the autocorrelation C(t) and the spectral density J(ω) are related as:

J(ω) =
βω

2π
Re{F [C(t)]}

With:

Re{F [C(t)]} = 2

∫ ∞
0

C(t)cos(ωt)dt

Based, on this, the Fourier transform was calculated using the functions provided by
NumPy [34], and the real part was multiplied by the thermal factor. This method gave
the right shape, but with a wrong scaling factor and a non-so smooth result.
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A.4 Testing System: Hamiltonian and Noise generation

The 4× 4 Hamiltonian used in the comparison between the different structured-noise algo-
rithms, as shown in figure 12, is the following:

H =


10 −87.7 5.5 −5.9
−87.7 130 30.8 8.2

5.5 30.8 −190 −53.5
−5.9 8.2 −53.5 −80

 (1-47)

And was obtained from [38].

Additionally, the parameters employed for the noise generation are:

Parameter Numerical Value Units

λ 35 cm−1

1/γ 25 fs
dt 1 fs
T 2000 fs
R 1000 -

The graph generated in the implementation section, where the population dynamics were
discussed, was generated using the same parameters, with the difference that the length used
there was instead T = 1000 fs

43



References

[1] R. E. Blankenship, Molecular Mechanisms of Photosynthesis. New York: John Wiley
& Sons, 2014, isbn: 978-1-118-79696-2.
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